Wrocławscy naukowcy modyfikują ludzkie białko do zastosowań w terapii

0

Wrocławscy naukowcy pracują nad modyfikacjami jednego z ludzkich białek – FGF1, które mogłyby znaleźć zastosowanie w leczeniu trudno gojących się ran, chorób niedokrwiennych, cukrzycy, czy nawet regeneracji uszkodzonych tkanek i narządów. W przyszłości białko to może być nośnikiem leków do komórek nowotworowych.

Naukowcy z Zakładu Inżynierii Białka Wydziału Biotechnologii UWr badają mechanizmy działania białek – najważniejszych makrocząsteczek w ludzkim organizmie. Modyfikują je także metodami inżynierii genetycznej, aby mogły znaleźć zastosowanie do celów terapeutycznych.

Jednym z obiektów ich badań jest ludzkie białko FGF1 – czynnik wzrostu oddziałujący na bardzo wiele typów komórek i prowadzący m.in. do ich podziału.

„FGF1 przyspiesza gojenie się ran i zrastanie kości, uczestniczy także w tworzeniu nowych naczyń krwionośnych i obniża poziom glukozy we krwi, może także znaleźć zastosowanie jak nośnik leków do komórek nowotworowych” – opowiadała PAP dr hab. Małgorzata Zakrzewska z Zakładu Inżynierii Białka UWr.

FGF1 to białko wytwarzane w wielu typach tkanek, m.in. w komórkach mięśni gładkich i nabłonka, w komórkach wątroby, naskórka, tkanki łącznej, makrofagach i nerwowych. Stymuluje ono m.in. syntezę DNA oraz namnażanie się komórek.

Zarówno dzięki aktywacji receptorów na powierzchni komórek, jak i swojej wewnątrzkomórkowej aktywności, białko FGF1 promuje przeżycie komórek, zabezpiecza je przed niekorzystnymi warunkami i działa jako czynnik przeciwdziałający programowanej śmierci komórki (apoptozie).

Analizując sekwencję białka oraz jego strukturę naukowcy projektują takie mutacje i modyfikacje, które poprawią lub zmienią właściwości tej cząsteczki.

„Korzystając z technologii rekombinowanego DNA jesteśmy w stanie wydajnie produkować to ludzkie białko w komórkach bakteryjnych. Sekwencję DNA ludzkiego białka klonujemy do specjalnego konstruktu genetycznego, który następnie wprowadzamy do bakterii Escherichia coli. W warunkach laboratoryjnych uzyskujemy w ten sposób duże ilości białka, które następnie starannie oczyszczamy” – opisywała dr Zakrzewska.

Sprawdzając właściwości czystego białka naukowcy analizują, czy ma ono poprawną strukturę, i czy wiąże się prawidłowo z receptorami na powierzchni komórek. W swoich badaniach wykorzystują ludzkie komórki, które hodują w warunkach laboratoryjnych.

„Sprawdzamy, jak badane przez nas warianty białka wpływają na podziały komórkowe, namnażanie się i migrację zarówno zdrowych, jak i chorobowo zmienionych, nowotworowych tkanek. Weryfikujemy także, gdzie w komórkach lokalizuje się białko FGF1, jak wydajnie przedostaje się ono do wnętrza komórki i jakie procesy aktywuje” – wyjaśniła badaczka.

Według naukowców ze względu na swoje właściwości i potencjał regeneracyjny, białko FGF1 jest coraz częściej postrzegane jako potencjalny środek terapeutyczny, który mógłby znaleźć szerokie zastosowanie przy leczeniu wielu chorób.

Ponieważ białko to bierze udział w procesie gojenia i naprawy tkanek, może być użyteczne w leczeniu przewlekłych ran, trudno gojących się złamań czy uszkodzeń nerwów. Zapewnia także efekt ochronny w przypadku komórek narażonych na promieniowanie gamma. Posiada również angiogenne własności, które – zdaniem badaczy – można wykorzystać w terapii chorób naczyniowo-sercowych.

Wrocławscy naukowcy badają także zupełnie nowe, odkryte dopiero w ostatnich latach właściwości FGF1. Chodzi o właściwości związane z zapobieganiem śmierci komórek czy jego działaniem przeciwcukrzycowym.

Natomiast zwiększona ekspresja receptorów FGF w różnych rodzajach nowotworów m.in. piersi, pęcherza, prostaty, czy płuc sprawia – zdaniem dr Zakrzewskiej – że białko to, po odpowiedniej modyfikacji, może pełnić także funkcję czynnika kierującego wybrany lek do komórek nowotworowych.

„Modyfikujemy biało FGF1 tak, aby posłużyło w przyszłości jako skuteczny lek. Konstruujemy warianty, które działają dłużej i są mniej wrażliwe na degradację. Uzyskujemy białko, które mogłyby znaleźć zastosowanie w leczeniu trudno gojących się ran, chorób niedokrwiennych, uszkodzeń tkanek czy cukrzycy. Mogłoby także zostać wykorzystane jako nośnik leków cytostatycznych do komórek nowotworowych” – podsumowała dr hab. Małgorzata Zakrzewska.

Dzięki uprzejmości: PAP – Nauka w Polsce, Kamil Szubański

Zostaw odpowiedź

Twoj adres e-mail nie bedzie opublikowany.


The reCAPTCHA verification period has expired. Please reload the page.